FOSSIL HUNTRESS
MUSINGS MEANT TO CAPTIVATE, EDUCATE AND INSPIRE

Tuesday, 20 May 2025
BLUE JAY: KWASKWAS
Monday, 19 May 2025
BRONZE BEAUTY: EIFELIAN PARALEJURUS
It was the colour of this amazing trilobite that captured the eye of David Appleton in whose collection it now resides. He is an avid collector and coming into his own as a macro photographer. I have shared three of his delightful photos for you here.
It initially thought that the gold we see here was added during prep, particularly considering the colouration of the matrix, but macro views of the surface show mineralization and the veins running right through the specimen into the matrix. There is certainly some repairs but that is common in the restoration of these specimens. Many of the trilobites I have seen from Morocco have bronze on black colouring but not usually this pronounced. Even so, there is a tremendous amount of fine anatomy to explore and enjoy in this wonderfully preserved specimen.
Paralejurus is a genus of trilobite in the phylum Arthropoda from the Late Silurian to the Middle Devonian of Africa and Europe. These lovelies grew to be up to nine centimetres, though the fellow you see here is a wee bit over half that size at 5.3 cm.
Paralejurus specimens are very pleasing to the eye with their long, oval outline and arched exoskeletons.
Their cephalon or head is a domed half circle with a smooth surface. The large facet eyes have very pleasing crescent-shaped lids. You can see this rather well in the first of the photos here. The detail is quite remarkable.
As you move down from his head towards the body, there is an almost inconspicuous occipital bone behind the glabella in the transition to his burnt bronze thorax.
The body or thorax has ten narrow segments with a clearly arched and broad axial lobe or rhachis. The pygidium is broad, smooth and strongly fused in contrast to the genus Scutellum in the family Styginidae, which has a pygidium with very attractive distinct furrows that I liken to the look of icing ridges on something sweet — though that may just be me and my sweet tooth talking. In Paralejurus, they look distinctly fused — or able to fuse — to add posterior protection against predators with both the look and function of Roman armour.
In Paralejurus, the axillary lobe is rounded off and arched upwards. It is here that twelve to fourteen fine furrows extend radially to complete the poetry of his body design.
Trilobites were amongst the earliest fossils with hard skeletons and they come in many beautiful forms. While they are extinct today, they were the dominant life form at the beginning of the Cambrian.As a whole, they were amongst some of the most successful of all early animals — thriving and diversifying in our ancient oceans for almost 300 million years. The last of their brethren disappeared at the end of the Permian — 252 million years ago. Now, we enjoy their beauty and the scientific mysteries they reveal about our Earth's ancient history.
Photos and collection of the deeply awesome David Appleton. Specimen: 5.3 cm.
Tuesday, 13 May 2025
SKØKKENMØDDINGER: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
![]() |
Johnny Scow's Kwakwaka'wakw Kwakiutl House, 1918 |
The day-to-day activities of each of these communities were much like we have today. Babies were born, meals were served and life followed a natural cycle.
These refuse heaps contain a wealth of information about how that community lived, what they ate and what environmental conditions looked like over time. They also provide insight into the local gastronomic record on diet, species diversity, availability and variation.
This physical history provides a wonderful resource for archaeologists in search of botanical material, artifacts, broken cooking implements and my personal favourite, mollusc shells. Especially those formed from enormous mounds of bivalves and clams. We call these middens. Left for a period of time, these unwanted dinner scraps transform through a process of preservation.
Shell middens are found in coastal or lakeshore zones all over the world. Consisting mostly of mollusc shells, they are interpreted as being the waste products of meals eaten by nomadic groups or hunting parties. Some are small examples relating to meals had by a handful of individuals, others are many metres in length and width and represent centuries of shell deposition. In Brazil, they are known as sambaquis, left between the 6th millennium BCE and the beginning of European colonization.
European shell middens are primarily found along the Atlantic seaboard and in Denmark from the 5th millennium BCE (Ertebølle and Early Funnel Beaker cultures), containing the remains of the earliest Neolithisation process (pottery, cereals and domestic animals).
Younger shell middens are found in Latvia (associated with Comb Ware ceramics), Sweden (associated with Pitted Ware ceramics), the Netherlands (associated with Corded Ware ceramics) and Schleswig-Holstein (Late Neolithic and Iron Age). All these are examples where communities practised a mixed farming and hunting/gathering economy.
On Canada's west coast, there are shell middens that run for more than 1 kilometre (0.62 mi) along the coast and are several meters deep. The midden in Namu, British Columbia is over 9 metres (30 ft) deep and spans over 10,000 years of continuous occupation.
Shell middens created in coastal regions of Australia by Indigenous Australians exist in Australia today. Middens provide evidence of prior occupation and are generally protected from mining and other developments. One must exercise caution in deciding whether one is examining a midden or a beach mound. There are good examples on the Freycinet Peninsula in Tasmania where wave action currently is combining charcoal from forest fire debris with a mix of shells into masses that storms deposit above high-water mark.
Shell mounds near Weipa in far north Queensland are claimed to be middens but are actually shell cheniers, beach ridges re-worked by nest mound-building birds. The midden below is from Santa Cruz, Argentina. We can thank Mikel Zubimendi for the photo.
Some shell middens are regarded as sacred sites, such as the middens of the Anbarra of the Burarra from Arnhem Land, a historical region of the Northern Territory of Australia — a vast wilderness of rivers, rocky escarpments, gorges and waterfalls.
The Danish use the term køkkenmøddinger, coined by Japetus Steenstrup, a Danish zoologist and biologist, to describe shell heaps and continues to be used by some researchers.
So what about these ancient shells is so intriguing? Well, many things, not the least being their ability to preserve the past. Shells have a high calcium carbonate content.
Calcium carbonate is one of my favourite chemical compounds. It is commonly found in rocks — as the minerals calcite and aragonite, most notably as limestone, which is a type of sedimentary rock consisting mainly of calcite — and is the main component of pearls, snails, eggs and the shells of marine organisms.
Time and pressure leach the calcium carbonate, CaCO3, from the surrounding marine shells and help embalm bone and antler artifacts that would otherwise decay. Much of what we know around the modification of natural objects into tools comes from this preservation. The calcium carbonate (CaCO3) in the discarded shells tends to make the middens alkaline, slowing the normal rate of decay caused by soil acidity and leaving a relatively high proportion of organic material — food remnants, organic tools, clothing, human remains — to sift through and study.
Calcium carbonate shares the typical properties of other carbonates. In prepping fossil specimens embedded in limestone, it is useful to know that limestone, itself a carbonate sedimentary rock, reacts with stronger acids. If you paint the specimen with hydrochloric acid, you'll hear a little fizzling sound as the limestone melts and carbon dioxide is released: CaCO3(s) + 2HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l). I tend to use a 3-5 molar solution, then rinse with plain water.
Calcium carbonate reacts with water saturated with carbon dioxide to form the soluble calcium bicarbonate. Bone already contains calcium carbonate, as well as calcium phosphate, Ca2, but it is also made of protein, cells and living tissue.
I collected trade beads and treasures on the beachfront below the magnificent house you see in the first photo, but also found bits of bone and scraps of history of coastal living. I also collected many wonderful abalone buttons and wonderful shells.
The shells, beautiful in their own right, make the surrounding soil more alkaline, helping to preserve the bone and turn dinner scraps into exquisite scientific specimens for future generations.
Friday, 9 May 2025
FOSSILS OF HORNBY ISLAND
![]() |
Diplomoceras sp. |
Tuesday, 6 May 2025
NATURAL DYES: INDIGO
Archaeologists have found evidence of textile dyeing dating back to the Neolithic period.
The essential process of dyeing changed little over time. Typically, the dye material is put in a pot of water and then the textiles to be dyed are added to the pot, which is heated and stirred until the colour is transferred. Sometimes, we use workers with stout marching legs to mix this up.
Traditional dye works still operate in many parts of the world. There is a revival of using natural indigo in modern Egypt — although their indigo dye is mostly imported. The same is true further south in Sudan. They've been importing cloth from Upper Egypt as far back as we have written records and continue the practice of the cloth and dye imports today. Clean white cotton is more the style of western Sudan and Chad, but they still like to throw in a bit of colour.
![]() |
Traditional Dye Vats |
My guide took me to the top of a building so I could look down on rows and rows of coloured vats. In every other one was a man marching in place to work the dye into the wool. Their legs took on the colour from their daily march in place in huge tubs of liquid dye and sheared wool.
Many natural dyes require the use of chemicals called mordants to bind the dye to the textile fibres; tannin from oak galls, salt, natural alum, vinegar, and ammonia from stale urine were staples of the early dyers.
Many mordants and some dyes themselves produce strong odours. Urine is a bit stinky. Not surprisingly, large-scale dyeworks were often isolated in their own districts.
![]() |
Woad, Isatis tinctoria |
Dyes such as cochineal and logwood, Haematoxylum campechianum, were brought to Europe by the Spanish treasure fleets, and the dyestuffs of Europe were carried by colonists to America.
Throughout history, people have dyed their textiles using common, locally available materials, but scarce dyestuffs that produced brilliant and permanent colours such as the natural invertebrate dyes. Crimson kermes became highly prized luxury items in the ancient and medieval world. Red, yellow and orange shades were fairly easy to procure as they exist as common colourants of plants. It was blue that people sought most of all and purple even more so.
Indigofera tinctoria, a member of the legume or bean family proved just the trick. This lovely plant — named by the famous Swedish botanist Carl Linneaus, the father of formalized binomial nomenclature — grows in tropical to temperate Asia and subtropical regions, including parts of Africa.
The plants contain the glycoside indican, a molecule that contains a nitrogenous indoxyl molecule with some glucose playing piggyback.
To make the lovely blue and purple dyes, we harvest the plants and ferment them in vats with urine and ash. The fermentation splits off the glucose, a wee bit of oxygen mixes in with the air (with those sturdy legs helping) and we get indigotin — the happy luxury dye of royalty, emperors and kings.
While much of our early dye came from plants — now it is mostly synthesized — other critters played a role. Members of the large and varied taxonomic family of predatory sea snails, marine gastropod mollusks, commonly known as murex snails were harvested by the Phoenicians for the vivid dye known as Tyrian purple.
While the extant specimens maintained their royal lineage for quite some time; at least until we were able to manufacture synthetic dyes, it was their fossil brethren that first captured my attention. There are about 1,200 fossil species in the family Muricidae.
George E. Radwin and Anthony D'Attilio: The Murex shells of the World, Stanford University press, 1976, ISBN 0-8047-0897-5
Pappalardo P., Rodríguez-Serrano E. & Fernández M. (2014). "Correlated Evolution between Mode of Larval Development and Habitat in Muricid Gastropods". PLoS ONE 9(4): e94104. doi:10.1371/journal.pone.0094104
Miocene Gastropods and Biostratigraphy of the Kern River Area, California; United States Geological Survey Professional Paper 642
Saturday, 3 May 2025
BARNACLES: KWIT'A'A
They choose their permanent homes as larvae, sticking to hard substrates that will become their permanent homes for the rest of their lives. It has taken us a long time to find how they actually stick or what kind of "glue" they were using.
Remarkably, the barnacle glue sticks to rocks in a similar way to how red cells bind together. Red blood cells bind and clot with a little help from some enzymes.
These work to create long protein fibres that first blind, clot then form a scab. The mechanism barnacles use, right down to the enzyme, is very similar. That's especially interesting as about a billion years separate our evolutionary path from theirs.
So, with the help of their clever enzymes, they can affix to most anything – ship hulls, rocks, and even the skin of whales. If you find them in tidepools, you begin to see their true nature as they open up, their delicate feathery finger-like projections flowing back and forth in the surf.
One of my earliest memories is of playing with them in the tidepools on the north end of Vancouver Island. It was here that I learned their many names. In the Kwak'wala language of the Pacific Northwest, the word for barnacles is k̕wit̕a̱'a — and if it is a very small barnacle it is called t̕sot̕soma — and the Kwak'wala word for glue is ḵ̕wa̱dayu.
Friday, 2 May 2025
AINOCERAS: VANCOUVER ISLAND HETEROMORPH
Within their shells, they had a number of chambers, called septa, filled with gas or fluid that were interconnected by a wee air tube.
By pushing air in or out, they were able to control their buoyancy in the water column. These little cuties were predators who hunted in Cretaceous seas.
They lived in the last chamber of their shells, continuously building new shell material as they grew. As each new chamber was added, the squid-like body of the ammonite would move down to occupy the final outside chamber.
Not all ammonites have this whacky corkscrew design. Most are coiled and some are even shaped like massive paperclips. This one is so remarkable, so joyously perfect my internal thesaurus can’t keep up.
Thursday, 1 May 2025
OUR GREAT BEARS: URSAVUS TO NAN
![]() |
GREAT BEAR NA̱N |
Both bear families descend from a common ancestor, Ursavus, a bear-dog the size of a raccoon who lived more than 20 million years ago. Seems an implausible lineage given the size of their very large descendants.
An average Grizzly weighs in around 800 lbs (363 kg), but a recent find in Alaska tops the charts at 1600 lbs (726 kg).
This mighty beast stood 12' 6' high at the shoulder, 14' to the top of his head and is one of the largest grizzlies ever recorded — a na̱ndzi.
Adult bears tend to live solo except during mating season. Those looking for love congregate from May to July in the hopes of finding a mate. Through adaptation to shifting seasons, the females' reproductive system delays the implantation of fertilized eggs — blastocysts —until November or December to ensure her healthy pups arrive during hibernation. If food resources were slim that year, the newly formed embryo will not catch or attach itself to her uterine wall and she'll try again next year.
Females reach mating maturity at 4-5 years of age. They give birth to a single or up to four cubs (though usually just two) in January or February. The newborn cubs are cute little nuggets — tiny, hairless, and helpless — weighing in at 2-3 kilograms or 4-8 pounds. They feast on their mother’s nutrient-dense milk for the first two months of life. The cubs stay with their mamma for 18 months or more. Once fully grown, they can run 56 km an hour, are good at climbing trees and swimming and live 20-25 years in the wild.
First Nation Lore and Language
In the Kwak'wala language of the Kwakiutl First Nations of the Pacific Northwest — or Kwakwaka'wakw, speakers of Kwak'wala — a Grizzly bear is known as na̱n.
The ornamental carved Grizzly bear headdress was worn by the comic Dluwalakha Grizzly Bear Dancers, Once more from Heaven, in the Grizzly Bear Dance or Gaga̱lalał, is known as na̱ng̱a̱mł.
The Dluwalakha dancers were given supernatural treasures or dloogwi which they passed down from generation to generation.
In the Hamat'sa Grizzly bear dance, Nanes Bakbakwalanooksiwae, no mask was worn. Instead, the dancers painted their faces red and wore a costume of bearskin or t̓ła̱ntsa̱m and long wooden claws attached to their hands. You can imagine how impressive that sight is lit by the warm flickering flames of firelight during a Winter Dance ceremony.
Smoke of the World / Speaking of the Ancestors — Na̱wiła
![]() |
Kwaguʼł Winter Dancers — Qagyuhl |
To tell stories of the ancestors is na̱wiła. Each of these ancestors took off their masks to become human and founded the many groups that are now bound together by language and culture as Kwakwaka’wakw.
The four First Nations who collectively make up the Kwakiutl are the Kwakiutl (Kwágu7lh), K’umk’utis/Komkiutis, Kwixa/Kweeha (Komoyoi) and Walas Kwakiutl (Lakwilala) First Nations.
There is likely blood of the Lawit’sis in there, too, as they inhabited the village site at Tsax̱is/T'sakis, Fort Rupert before the Kwakiutl First Nations made it a permanent home. It was here that I grew up and learned to greet my ancestors.
Not all Kwakwaka'wakw dance the Gaga̱lalał, but their ancestors likely attended feasts where the great bear was celebrated. To speak or tell stories of the ancestors is na̱wiła — and Grizzly bear as an ancestor is na̱n helus.
Visiting British Columbia's Great Bears
If you are interested in viewing British Columbia's Great Bears, do check out Indigenous Tourism BC's wonderfully informative website and the culturally-rich wildlife experiences on offer. You will discover travel ideas and resources to plan your next soul-powered adventure. To learn more about British Columbia's Great Bears and the continuing legacy of First Nation stewardship, visit:
Indigenous Tourism BC: https://www.indigenousbc.com
Great Bear Lodge has been offering tours to view the majestic animals of the Pacific Northwest. They keep both the guests' and the animals' comfort and protection in mind. I highly recommend their hospitality and expertise. To see their offerings, visit: www.greatbeartours.com
Image: Group of Winter Dancers--Qagyuhl; Curtis, Edward S., 1868-1952, https://lccn.loc.gov/2003652753.
Note: The Qagyuhl in the title of this photograph refers to the First Nation group, not the dancers themselves. I think our dear Edward was trying to spell Kwaguʼł and came as close as he was able. In Kwak'wala, the language of the Kwaguʼł or Kwakwakaʼwakw, speakers of Kwak'wala, the Head Winter Dancer is called t̕seḵa̱me' — and to call someone a really good dancer, you would use ya̱'winux̱w.
Charmingly, when Edward S. Curtis was visiting Tsaxis/T'sakis, he was challenged to a wrestling competition with a Giant Pacific Octopus, Enteroctopus dofleini. George Hunt (1854-1933) my great great grandfather's elder brother had issued the challenge and laughed himself senseless when Edward got himself completely wrapped up in tentacles and was unable to move. Edward was soon untangled and went on to take many more photos of the First Nations of the Pacific Northwest. Things did not go as well for the octopus or ta̱ḵ̕wa. It was later served for dinner or dzaḵwax̱stala, as it seemed calamari was destined for that night's menu.
Wednesday, 30 April 2025
FOSSILS OF CANADA'S EASTERN SHORES
![]() |
Pennsylvanian Coal Age Ecosystem, 300-Million-Years-Old |
References & further reading:
Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Image: Hylonomus lyelli, Una ricostruzione di ilonomo by Matteo De Stefano/MUSEThis file was uploaded by MUSE - Science Museum of Trento in cooperation with Wikimedia Italia., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=48143186
Image: Arthropleura: Par Tim Bertelink — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=48915156
Joggins Map: Joggins Fossil Cliffs: https://jogginsfossilcliffs.net/cliffs/history/
Tuesday, 29 April 2025
LOTUS FLOWER FRUIT
![]() |
Lotus Flower Fruit, Nelumbo |
The awesome possums from GRS are based out of North Logan, Utah, USA and have unearthed some world-class specimens. They've found Nelumbo leaves over the years but this is their first fossil specimen of the fruit.
And what a specimen it is! The spectacularly preserved fruit measures 6-1/2" round. Here you can see both the part and counterpart in fine detail. Doug Miller of Green River Stone sent copies to me this past summer and a copy to the deeply awesome Kirk Johnson, resident palaeontologist over at the Smithsonian Institute, to confirm the identification.
There is another spectacular specimen from Fossil Butte National Monument. They shared photos of a Nelumbo just yesterday. Nelumbo is a genus of aquatic plants in the order Proteales found living in freshwater ponds. You'll recognize them as the emblem of India, Vietnam and many wellness centres.
![]() |
Nelumbo Fruit, Green River Formation |
In the older classification systems, it was recognized under the biological order Nymphaeales or Nelumbonales. Nelumbo is currently recognized as the only living genus in Nelumbonaceae, one of several distinctive families in the eudicot order of the Proteales. Its closest living relatives, the (Proteaceae and Platanaceae), are shrubs or trees.
Interestingly, these lovelies can thermoregulate, producing heat. Nelumbo uses the alternative oxidase pathway (AOX) to exchange electrons. Instead of using the typical cytochrome complex pathway most plants use to power mitochondria, they instead use their cyanide-resistant alternative.
This is perhaps to generate a wee bit more scent in their blooms and attract more pollinators. The use of this thermogenic feature would have also allowed thermo-sensitive pollinators to seek out the plants at night and possibly use the cover of darkness to linger and mate.
So they functioned a bit little like a romantic evening meeting spot for lovers and a wee bit like the scent diffuser in your home. This lovely has an old lineage with fossil species in Eurasia and North America going back to the Cretaceous and represented in the Paleogene and Neogene. Photo Two: Doug Miller of Green River Stone Company
Saturday, 26 April 2025
ETHELDRED BENETT OF WILTSHIRE: FIRST FEMALE GEOLOGIST
She was also credited with being a man — the Natural History Society of Moscow awarded her membership as Master Etheldredus Benett in 1836. The confusion over her name (it did sound masculine) came again with the bestowing of a Doctorate of Civil Law from Tsar Nicholas I.
The Tsar had read Sowerby's Mineral Conchology, a major fossil reference work which contained the second-highest number of contributed fossils of the day, many of the best quality available at the time. Forty-one of those specimens were credited to Benett. Between her name and this wonderous contribution to a growing science, the Russian Tsar awarded the Doctorate to what he believed was a young male scientist on the rise.
Benett took these honours (and social blunders) with grace. She devoted her life to collecting and studying fossils from the southwest of England, amassing an impressive personal collection she openly shared with geologist friends, colleagues and visitors to her home. Her specialty was fossils from the Middle Cretaceous, Upper Greensand in the Vale of Wardour — a valley in the county of Wiltshire near the River Nadder.
Etheldred was a local Wiltshire girl. Born Etheldred Benett on 22 July 1775 at Pyt House, Tisbury, Wiltshire, the eldest daughter of the local squire Thomas Benett. Etheldred's interest was cultivated by the botanist Aylmer Bourke Lambert (1761-1842), a founding member of the Linnean Society.
Aylmer kindled an interest in natural history in both of Benett's daughters. Etheldred had a great fondness in geology, stratigraphy and all things paleo, whilst her sister concentrated on botany. Etheldred had a distinct advantage over her near contemporary, the working-class Mary Anning (1799-1847), in that Benett was a woman of independent wealth who never married — and didn't need to — who could pursue the acquisition and study of fossils for her own interest.
While Anning was the marine reptile darling of the age, she was also greatly hindered by her finances. "She sells, seashells by the seashore..." while chanted in a playful spirit today, was not meant kindly at the time. Aylmer's encouragement emboldened Etheldred to go into the field to collect for herself — and collect she did. Profusely.
Benett’s contribution to the early history of Wiltshire geology is significant. She corresponded extensively with the coterie of gentlemen scientists of the day — Gideon Mantell, William Buckland, James Sowerby, George Bellas Greenough and, Samuel Woodward. She also consorted with the lay folk and had an ongoing correspondence with William Smith, whose stratigraphy work had made a favourable impression on her brother-in-law, Aylmer.
Her collections and collaboration with geologists of the day were instrumental in helping to form the field of geology as a science. One colleague and friend, Gideon Mantell, British physician, geologist and palaeontologist, who discovered four of the five genera of dinosaurs and Iguanadon, was so inspired by Benett's work he named this Cretaceous ammonite after her — Hoplites bennettiana.
Benett's fossil assemblage was a valuable resource for her contemporaries and remains so today. It contains thousands of Jurassic and Cretaceous fossil specimens from the Wiltshire area and the Dorset Coast, including a myriad of first-recorded finds. The scientific name of every taxon is usually based on one particular specimen, or in some cases multiple specimens. Many of the specimens she collected serve as the Type Specimen for new species.
![]() |
Fossil Sponge, Polypothecia quadriloba, Warminster, Wiltshire |
Alas, no one took up the helm — those interested were busy with other pursuits (or passed away) and others were less than enthusiastic or never seemed to get around to it.
To ensure the knowledge was shared in a timely fashion, she finally wrote them up and published them herself. You can read her findings in her publication, ‘A Catalogue of Organic Remains of the County of Wiltshire’ (1831), where she shares observations on the fossil sponge specimens and other invert goodies from the outcrops west of town.
She shared her ideas freely and donated many specimens to local museums. It was through her exchange of observations, new ideas and open sharing of fossils with Gideon Mantell and others that a clearer understanding of the Lower Cretaceous sedimentary rocks of Southern England was gained.
In many ways, Mantell was drawn to Benett as his ideas went against the majority opinion. At a time when marine reptiles were dominating scientific discoveries and discussions, he pushed the view that dinosaurs were terrestrial, not amphibious, and sometimes bipedal. Mantell's life's work established the now-familiar idea that the Age of Reptiles preceded the Age of Mammals. Mantell kept a journal from 1819-1852, that remained unpublished until 1940 when E. Cecil Curwen published an abridged version. (Oxford University Press 1940). John A. Cooper, Royal Pavilion and Museums, Brighton and Hove, published the work in its entirety in 2010.
I was elated to get a copy, both to untangle the history of the time and to better learn about the relationship between Mantell and Benett. So much of our geologic past has been revealed since Mantell's first entry two hundred years ago. The first encounter we share with the two of them is a short note from March 8, 1819. "This morning I received a letter from Miss Bennett of Norton House near Warminster Wilts, informing me of her having sent a packet of fossils for me, to the Waggon Office..." The diary records his life, but also the social interactions of the day and the small connected community of the scientific social elite. It is a delight!
Though a woman in a newly evolving field, her work, dedication and ideas were recognized and appreciated by her colleagues. Gideon Mantell described her as, "a lady of great talent and indefatigable research," whilst the Sowerbys noted her, "labours in the pursuit of geological information have been as useful as they have been incessant."
Benett produced the first measured sections of the Upper Chicksgrove quarry near Tisbury in 1819, published and shared with local colleagues as, "the measure of different beds of stone in Chicksgrove Quarry in the Parish of Tisbury.” The stratigraphic section was later published by naturalist James Sowerby without her knowledge. Her research contradicted many of Sowerby’s conclusions.
She wrote and privately published a monograph in 1831, containing many of her drawings and sketches of molluscs and sponges. Her work included sketches of the fossil Alcyonia (1816) from the Green Sand Formation at Warminster Common and the immediate vicinity of Warminster in Wiltshire.
![]() |
Echinoids and Bivalves. Collection of Etheldred Benett (1775-1845) |
If you'd like to read a lovely tale on William's work, check out the Map that Changed the World: William Smith and the Birth of Modern Geology by Simon Winchester. It narrates the intellectual context of the time, the development of Smith's ideas and how they contributed to the theory of evolution and more generally to a dawning realization of the true age of the earth.
The book describes the social, economic or industrial context for Smith's insights and work, such as the importance of coal mining and the transport of coal by means of canals, both of which were a stimulus to the study of geology and the means whereby Smith supported his research. Benett debated many of the ideas Smith put forward. She was luckier than Smith financially, coming from a wealthy family, a financial perk that allowed her the freedom to add fossils to her curiosity cabinet at will.
Most of her impressive collection was assumed lost in the early 20th century. It was later found and purchased by an American, Thomas Bellerby Wilson, who donated it to the Academy of Natural Sciences of Philadelphia. Small parts of it made their way into British museums, including the Leeds City Museum, London, Bristol and to the University of St. Petersburg. These collections contain many type specimens and some of the very first fossils found — some with the soft tissues preserved. When Benett died in 1845, it was Mantell who penned her obituary for the London Geological Journal.
In 1989, almost a hundred and fifty years after her death, a review of her collection had Arthur Bogen and Hugh Torrens remark that her work has significantly impacted our modern understanding of Porifera, Coelenterata, Echinodermata, and the molluscan classes, Cephalopoda, Gastropoda, and Bivalvia. A worthy legacy, indeed.
Her renown lives on through her collections, her collaborations and through the beautiful 110 million-year-old ammonite you see here, Hoplites bennettiana. The lovely example you see here is in the collection of the deeply awesome Christophe Marot.
Spamer, Earle E.; Bogan, Arthur E.; Torrens, Hugh S. (1989). "Recovery of the Etheldred Benett Collection of fossils mostly from Jurassic-Cretaceous strata of Wiltshire, England, analysis of the taxonomic nomenclature of Benett (1831), and notes and figures of type specimens contained in the collection". Proceedings of the Academy of Natural Sciences of Philadelphia. 141. pp. 115–180. JSTOR 4064955.
Torrens, H. S.; Benamy, Elana; Daeschler, E.; Spamer, E.; Bogan, A. (2000). "Etheldred Benett of Wiltshire, England, the First Lady Geologist: Her Fossil Collection in the Academy of Natural Sciences of Philadelphia, and the Rediscovery of "Lost" Specimens of Jurassic Trigoniidae (Mollusca: Bivalvia) with Their Soft Anatomy Preserved.". Proceedings of the Academy of Natural Sciences of Philadelphia. 150. pp. 59–123. JSTOR 4064955.
Photo credit: Fossils from Wiltshire. In the foreground are three examples of the echinoid, Cidaris crenularis, from Calne, a town in Wiltshire, southwestern England, with bivalves behind. Caroline Lam, Archivist at the Geological Society, London, UK. http://britgeodata.blogspot.com/2016/03/etheldred-benett-first-female-geologist_30.html
Photo credit: Fossil sponges Polypothecia quadriloba, from Warminster, Wiltshire. The genus labels are Benett’s, as is the handwriting indicating the species. The small number, 20812, is the Society’s original accession label from which we can tell that the specimen was received in April 1824. The tablet onto which the fossils were glued is from the Society’s old Museum.
Thursday, 24 April 2025
GIANT GROUND SLOTH: MASSIVE EXTINCT VEGANS
The megatheria were large terrestrial sloths belonging to the group, Xenarthra. These herbivores inhabited large areas of land on the American continent. Their powerful skeleton enabled them to stand on their hind legs to reach leaves high in the trees, a huge advantage given the calories needed to be consumed each day to maintain their large size.
Avocados were one of the food preferences of our dear Giant ground sloths. They ate then pooped them out, spreading the pits far and wide. The next time you enjoy avocado toast, thank this large beastie. One of his ancestors may have had a hand (or butt) in your meal.
In 1788, Bru assembled the skeleton as you see it here. It is exhibited at the Museo Nacional De Ciencias Naturales in Madrid, Spain, in its original configuration for historic value. If you look closely, you'll see it is not anatomically correct. But all good paleontology is teamwork. Based upon the drawings of Juan Bautista Bru, George Cuvier used this specimen to describe the species for the very first time.
Friday, 18 April 2025
UNEARTHING THE PAST: TRILOBITES OF BRITISH COLUMBIA
But hidden within its rocky layers lies a much older and stranger world—one that predates dinosaurs by hundreds of millions of years. That world was once ruled by creatures known as trilobites.
What Are Trilobites?
Trilobites were marine arthropods that roamed the oceans for over 270 million years, from the Early Cambrian to the end of the Permian period.
These hard-shelled creatures looked a bit like a cross between a horseshoe crab and a pill bug, with segmented bodies, jointed legs, and a wide range of sizes and shapes. Over 20,000 species have been identified, making them one of the most diverse and successful early animal groups in Earth's history.
Their fossils are found all over the world—but some of the most remarkable specimens come from the ancient seabeds now uplifted and exposed in British Columbia.
Trilobites in BC: A Window Into the Cambrian Explosion
British Columbia holds a special place in the study of early life, particularly due to the world-renowned Burgess Shale fossil site in Yoho National Park. While the Burgess Shale is famous for preserving soft-bodied organisms, it also offers stunning examples of trilobites—often found with delicate spines and appendages intact, thanks to the unique preservation conditions.
The Burgess Shale trilobites date back to around 508 million years ago, during the Cambrian period—a time often referred to as the Cambrian Explosion due to the rapid diversification of complex life. Trilobites were among the most prominent creatures of this era, and their fossils help paleontologists understand how early ecosystems functioned.
Lower Cambrian Trilobites of the Eager Formation
Just east of Cranbrook, the Eager Formation preserves fossil assemblages from the Lower Cambrian—making it one of the oldest fossiliferous units in British Columbia. In a 2003 study, paleontologist Jean-Bernard Caron, along with co-authors, examined trilobite faunas from this formation, revealing a rich and diverse array of early trilobite life.
Among the trilobites described from the Eager Formation are:
Fritzaspis – A small, early trilobite representative of the Olenellid group.Mesonacis eagerensis – A species named after the formation itself, notable for its distinctive glabella (central lobe of the head).
Caron’s work emphasized the biostratigraphic and paleobiogeographic significance of these trilobites, helping to correlate the Eager Formation with other Lower Cambrian sites across Laurentia (ancient North America).
Upper Cambrian Trilobites of the McKay Group
While the Eager Formation provides insight into the dawn of trilobite history, the McKay Group, also near Cranbrook, offers a detailed look at Upper Cambrian trilobite evolution. This group of rock formations—consisting primarily of shales and limestones—preserves an abundant and diverse trilobite fauna.
It has been the collaborative efforts of Chris New, Chris Jenkins, Guy Santucci, Don Askew and Stacey Gibb that has helped open up the region — including finding and identifying many new species or firsts including Pseudagnostus securiger, a widespread early Jiangshanian species not been previously recorded from southeastern British Columbia.
Paleontologist Brian Chatterton has published extensively on trilobites from the McKay Group, identifying a wide range of species that highlight evolutionary trends and faunal turnover toward the end of the Cambrian period.
Some of the trilobite genera and species Chatterton documented include:
Pterocephalia norfordi – A species named in honor of paleontologist B.S. Norford, noted for its distinctive broad cephalon.
Elvinia roemeri – An elegant Upper Cambrian species found throughout western North America.
Calyptaulax – With its spiny thorax and well-defined segmentation, it is a striking example of late Cambrian trilobite morphology.
Prosaukia – Often used in Upper Cambrian biostratigraphy for correlation across regions.
Orygmaspis contracta – A widespread trilobite in the Upper Cambrian that helps paleontologists understand geographic distribution.
Honouring the People Behind the Fossils
British Columbia’s trilobite story isn’t just about ancient animals—it’s also about the people who help uncover them.
Several trilobite species from the McKay and Eager formations have been named in honour of those who contributed to their discovery and study:
Pterocephalia santuccii – Named after Guy Santucci, a life-long friend and hugely respected geologist with the Geological Survey of Canada whose fieldwork and geological mapping helped bring attention to fossil-rich sites in southeastern BC. He
Orygmaspis newi – Honours Chris New, a dedicated citizen scientist and fossil enthusiast whose field observations and fossil contributions have aided formal scientific research in the region.
Calyptaulax jenkinsi – Recognizes Chris Jenkins, a citizen scientist whose careful collection and documentation of trilobite specimens played a key role in expanding the known diversity of the McKay Group fauna.
These species highlight the collaborative nature of paleontology, where discoveries often come from a blend of academic research, geological expertise, and passionate individuals in the community.
Notable BC Trilobites Across Time
Across the Cambrian layers of BC, notable trilobites include:
Olenoides serratus – From the Middle Cambrian Burgess Shale, often preserved with soft tissues.
Wanneria walcottana – An Early Cambrian form found in various parts of BC.
Mesonacis eagerensis – A Lower Cambrian species from the Eager Formation.
Pterocephalia santuccii, Orygmaspis newi, and Calyptaulax jenkinsi – Upper Cambrian trilobites named in honor of key contributors to BC paleontology.
Together, these fossils span tens of millions of years, tracing the evolutionary arc of trilobites from their origins to their diversification.
The Science (and Art) of Fossil Hunting
While fossil collection is restricted in national parks like Yoho, some other Cambrian formations near Cranbrook, including parts of the McKay and Eager Formations, are accessible for scientific study and regulated collection. These regions continue to offer paleontologists new insights into trilobite diversity, ecology, and biogeography.
Trilobite fossils are not just scientifically valuable—they’re also incredibly beautiful. Their symmetry, segmentation, and sometimes intricate ornamentation have made them prized by collectors and natural history museums alike.
If you would like to see some of the amazing specimens collected in British Columbia, I recommend a visit to the Cranbrook History Centre. Located on the Traditional territory of the Ktunaxa First Nation, it offers a look at local recent history and a deep dive into the past with many exceptional Cambrian trilobites on display along with their arthropod brethren, Tuzoia and associated species. Their collections also boast a rather nice display of Devonian fish.
Why They Matter Today
Trilobites may be extinct, but they still teach us a lot. Their evolutionary history helps scientists track how life responded to ancient climate changes, mass extinctions, and the rise of predators. In a way, trilobites are time travelers—messengers from a vanished ocean world that still speaks to the challenges and wonders of life on Earth today.
So next time you're the ancient outcrops of our beautiful province, remember: beneath your boots may lie the fossilized remains of a once-thriving marine world—where trilobites crawled, burrowed, and thrived in seas long since vanished.
Tuesday, 15 April 2025
15TH BCPA SYMPOSIUM, COURTENAY: AUG 22-25, 2025
- Friday, August 22nd at the Courtenay and District Museum and Paleontological Centre, 207 - 4th Street, Courtenay, British Columbia including a Museum Tour with Pat Trask
- Saturday, August 23rd, 6 PM - 9:30 PM at the Florence Filberg Centre featuring Ray Troll as the Dinner Speaker
- Saturday, August 23rd, 9 AM - 4:30 PM
- Sunday, August 24th, 9 AM to 12:30 PM
- All presentations and poster sessions are at the Florence Filberg Centre at 411 Anderton Avenue in downtown Courtenay, Vancouver Island, British Columbia. The Florence Filberg Centre is 1/2 block from the Courtenay Museum, close to shops and restaurants
- Friday, August 22nd: Shelter Point
- Sunday, August 24th: Trent River
- Monday, August 25th: Hornby Island, Collishaw Point
- Sunday, August 25, 2025, 1:30 PM - 4:00 PM: Fossil Preparation Workshop with James Wood, Jay Hawley and Dan Bowen